Glulam Layup Combinations

APA

THE TABLES IN THIS SUPPLEMENT REPRESENT THE FULL OFFERING OF APA EWS LAYUP COMBINATIONS.
They are provided as a guide to manufacturers who produce beams in these combinations.

TABLE S-1
GRADE REQUIREMENTS FOR MEMBERS STRESSED PRIMARILY IN BENDING (MIXED GRADES) ${ }^{(1,2)}$

				Min	ade of Laminati	
					de/Species Each	
Combination Symbol	Balanced/ Unbalanced	Depth of Member	Tension Lam ${ }^{(3)}$	Outer Tension Zone	Inner Tension Zone	Core
1	2	3	4	5	6	7
Western Species (W)						
EWS 16F-V3/WS	U	$\begin{gathered} <12 \mathrm{in} . \\ 12 \text { to } 15 \mathrm{in} . \\ >15 \mathrm{in.} \end{gathered}$		$\begin{aligned} & \text { 10\%L2/DF } F^{(10)} \\ & 10 \% \mathrm{~L} 2 / \mathrm{DF}^{(10)} \\ & 5 \% \mathrm{~L} 1 / \mathrm{DF}^{(10)} \end{aligned}$	5\%L2/DF	$\begin{aligned} & \mathrm{L} 3 / \mathrm{DF} \\ & \mathrm{~L} 3 / \mathrm{DF} \\ & \mathrm{~L} 3 / \mathrm{DF} \end{aligned}$
EWS 20F-E/ES1	B	4 lams 5 lams to 10-1/2 in. 12 to 15 in.	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	5\%1.9E/ES 25\%1.9E/ES 25\%1.9E/ES	$\begin{aligned} & \text { - } \\ & \text { 10\% } 4 / \mathrm{ES} \\ & 10 \% \mathrm{C} 4 / \mathrm{ES} \end{aligned}$	$\begin{aligned} & \text { B/ES } \\ & \text { D/ES } \\ & \text { D/ES } \end{aligned}$
EWS 20F-E/SPF1 ${ }^{(11)}$	B	$\begin{gathered} 7-1 / 2 \mathrm{in} . \\ 9 \mathrm{in} . \\ 9-1 / 2 \mathrm{in.} \\ 11-7 / 8 \mathrm{in.} \\ 14 \mathrm{in} . \end{gathered}$		$\begin{aligned} & 1-B / S P F \\ & 1-B / S P F \\ & 2-B / S P F \\ & 2-B / S P F \\ & 3-B / S P F \end{aligned}$	$\begin{aligned} & 1-C 4 / S P F \\ & 1-C 4 / S P F \\ & 1-C 4 / S P F \\ & 2-C 4 / S P F \\ & 2-C 4 / S P F \end{aligned}$	6-D/SPF 8-D/SPF 7-D/SPF 8-D/SPF 9-D/SPF
EWS 20F-E8/WS	U	$\begin{gathered} <12 \text { in. } \\ 12 \text { to } 13-1 / 2 \text { in. } \\ >13-1 / 2 \text { to } 19-1 / 2 \text { in. } \\ >19-1 / 2 \text { to } 24 \mathrm{in.} \\ >24 \mathrm{in.} . \end{gathered}$	$\begin{aligned} & 302-20 \\ & 302-22 \\ & 302-22 \\ & 302-24 \\ & 302-24 \end{aligned}$	$\begin{aligned} & 10 \% \mathrm{~B} / \mathrm{ES} \\ & 10 \% \mathrm{~B} / \mathrm{ES} \\ & 20 \% \mathrm{~B} / \mathrm{ES} \\ & 15 \% \mathrm{~B} / \mathrm{ES} \\ & 15 \% \mathrm{~B} / \mathrm{ES} \end{aligned}$	$\begin{aligned} & \text { 15\%C4/ES } \\ & 15 \% \text { C4/ES } \\ & 10 \% \text { C4/ES } \\ & 10 \% \text { C4/ES } \\ & 10 \% \text { C4/ES } \end{aligned}$	$\begin{aligned} & \hline \text { D/ES } \\ & \text { D/ES } \end{aligned}$
EWS 20F-E8M1/WS	B	$\begin{gathered} <12 \text { in. } \\ 12 \text { to } 13-1 / 2 \text { in. } \\ >13-1 / 2 \text { to } 19-1 / 2 \text { in. } \\ >19-1 / 2 \text { to } 24 \text { in. } \\ >24 \text { in. } \end{gathered}$	$\begin{aligned} & 302-20 \\ & 302-22 \\ & 302-22 \\ & 302-24 \\ & 302-24 \end{aligned}$	$\begin{aligned} & 10 \% \mathrm{~B} / \mathrm{ES} \\ & 10 \% \mathrm{~B} / \mathrm{ES} \\ & 20 \% \mathrm{~B} / \mathrm{ES} \\ & 15 \% \mathrm{~B} / \mathrm{ES} \\ & 15 \% \mathrm{~B} / \mathrm{ES} \end{aligned}$	$\begin{aligned} & \text { 15\%C4/ES } \\ & 15 \% \text { C4/ES } \\ & 10 \% \text { C4/ES } \\ & 10 \% \text { C4/ES } \\ & 10 \% \text { C4/ES } \end{aligned}$	$\begin{aligned} & \hline \text { D/ES } \\ & \text { D/ES } \end{aligned}$
EWS 20F-V4/WS	U	$\begin{gathered} <12 \mathrm{in} . \\ 12 \text { to } 15 \mathrm{in.} . \\ <12 \mathrm{in.} \\ 12 \text { to } 15 \mathrm{in.} . \\ >15 \mathrm{in.} \end{gathered}$	$\begin{gathered} \hline- \\ - \\ 302-20 \\ 302-20 \\ 302-22 \end{gathered}$	$15 \% \mathrm{LICL} / \mathrm{DF}^{(10)}$ $20 \% L_{1 C L}^{C D F}{ }^{(10)}$ $10 \% \mathrm{~L}$ CL/DF ${ }^{(10)}$ $10 \% \mathrm{LICL} / \mathrm{DF}^{(10)}$ $5 \% L 1 C L / D F^{(10)}$	$\begin{gathered} \hline 15 \% \text { L2/DF } \\ 25 \% \text { L2/DF } \\ - \\ - \\ 10 \% \text { L2/DF } \end{gathered}$	L3/DF L3/DF L3/DF L3/DF L3/DF
EWS 20F-V8/WS	B	$\begin{gathered} <12 \mathrm{in.} \\ 12 \text { to } 15 \mathrm{in.} . \\ <12 \mathrm{in.} \\ 12 \text { to } 15 \mathrm{in.} . \\ >15 \mathrm{in.} \end{gathered}$	$\begin{gathered} \hline- \\ - \\ 302-20 \\ 302-20 \\ 302-22 \end{gathered}$	15\%LICL/DF ${ }^{(10)}$ $15 \% \mathrm{LICL}^{1} / \mathrm{DF}^{(10)}$ $10 \% L_{1 C L}^{C} \mathrm{DF}^{(10)}$ $10 \% \mathrm{LICL} / \mathrm{DF}^{(10)}$ $5 \% \mathrm{LICL} / \mathrm{DF}^{(10)}$	$\begin{gathered} \hline 20 \% \text { L2/DF } \\ 20 \% \text { L2/DF } \\ - \\ - \\ 5 \% \text { L2/DF } \end{gathered}$	L3/DF L3/DF L3/DF L3/DF L3/DF
EWS 20F-V12/WS	U	$\begin{gathered} <12 \mathrm{in} . \\ 12 \text { to } 15 \mathrm{in.} . \\ >15 \mathrm{in} . \end{gathered}$	$\begin{aligned} & 302-20 \\ & 302-22 \\ & 302-24 \end{aligned}$	15\%LID/AYC 15\%LID/AYC 10\%LIS/AYC	$\begin{aligned} & \text { 10\%L2/AYC } \\ & \text { 10\%L2/AYC } \\ & 10 \% \text { L1D/AYC } \end{aligned}$	L3/AYC L3/AYC L3/AYC
EWS 20F-V13/WS	B	$\begin{gathered} <12 \mathrm{in} . \\ 12 \text { to } 15 \mathrm{in.} . \\ >15 \mathrm{in.} \end{gathered}$	$\begin{aligned} & 302-20 \\ & 302-22 \\ & 302-24 \end{aligned}$	15\%LID/AYC 15\%LID/AYC 10\%LIS/AYC	$\begin{gathered} \hline \text { 10\%L2/AYC } \\ \text { 10\%L2/AYC } \\ \text { 10\%L1D/AYC } \end{gathered}$	L3/AYC L3/AYC L3/AYC
EWS 22F-V/POC1	B	$\begin{gathered} 4 \text { lams to }<12 \mathrm{in} . \\ 12 \text { to } 15 \mathrm{in.} \\ >15 \mathrm{in.} \end{gathered}$	$\begin{aligned} & 302-20 \\ & 302-20 \\ & 302-22 \end{aligned}$	$20 \% \mathrm{LI}_{1 / \mathrm{POC}}{ }^{(12)}$ $20 \% \mathrm{~L} / \mathrm{POC}^{(12)}$ $20 \% \mathrm{~L} / \mathrm{POC}^{(12)}$		$\begin{aligned} & \text { L2/POC } \\ & \text { L2/POC } \\ & \text { L2/POC } \end{aligned}$
EWS 22F-V/POC2	U	$\begin{gathered} 4 \text { lams to }<12 \text { in. } \\ 12 \text { to } 15 \mathrm{in.} \\ >15 \mathrm{in} . \end{gathered}$	$\begin{aligned} & 302-20 \\ & 302-20 \\ & 302-22 \end{aligned}$	20% L1/POC ${ }^{(12)}$ $25 \% \mathrm{~L}^{1 / P O C^{(12)}}$ $25 \% \mathrm{~L} / \mathrm{POC}^{(12)}$		$\begin{aligned} & \text { L2/POC } \\ & \text { L2/POC } \\ & \text { L2/POC } \end{aligned}$
EWS 24F-E/CSP1	B	$\begin{aligned} & \leq 10-1 / 2 \text { in. } \\ & >10-1 / 2 \mathrm{in.} \end{aligned}$	Special rules ${ }^{(13)}$	$\begin{gathered} \hline 20 \% 2.0 \mathrm{E} / \mathrm{CSP} \\ 5 \% 2.0 \mathrm{E} / \mathrm{CSP} \end{gathered}$	$\begin{gathered} \hline 5 \% 1.8 \mathrm{E} / \mathrm{CSP} \\ 10 \% 1.8 \mathrm{E} / \mathrm{CSP} \end{gathered}$	$\begin{aligned} & \text { 1.4E/CSP } \\ & \text { 1.4E/CSP } \end{aligned}$

Footnotes on page 12.

Minimum Grade of Laminations ${ }^{(4,5,6,7)}$

Minimum Grade of Laminations ${ }^{(4,5,6,7)}$						
Percent/Grade/ Species Each Zone ${ }^{(8)}$		Edge Knot/ Slope-of-grain ${ }^{(9)}$				
Inner Comp. Zone	Outer Comp. Zone	Outer Tension Zone	Inner Tension Zone	Core	Inner Comp. Zone	Outer Comp. Zone
8	9	10	11	12	13	14
-	L3/DF ${ }^{(10)}$	-	-	-	-	-
-	L3/DF ${ }^{(10)}$	-	-	-	-	-
-	L3/DF ${ }^{(10)}$	-	-	-	-	-
-	5\%1.9E/ES	1/6	-	-	-	1/6
10\%C4/ES	25\%1.9E/ES	1/6	-	-	-	1/6
10\%C4/ES	25\%1.9E/ES	1/6	-	-	-	1/6
1-C4/SPF	1-B/SPF	-	-	-	-	-
1-C4/SPF	1-B/SPF	-	_	_	_	-
1-C4/SPF	2-B/SPF	-	-	-	-	-
2-C4/SPF	2-B/SPF	-	-	-	_	-
2-C4/SPF	3-B/SPF	-	-	-	-	-
15\%D4/ES	10\%C6/ES	-	-	-	-	-
15\%D4/ES	10\%C6/ES	-	-	-	-	-
10\%D4/ES	15\%C6/ES	-	-	-	-	-
15\%D4/ES	10\%C6/ES	-	-	-	-	-
10\%D4/ES	15\%C6/ES	-	-	-	-	-
15\%C4/ES	10\%B/ES	-	-	-	-	-
15\%C4/ES	10\%B/ES	-	-	-	-	-
10\%C4/ES	20\%B/ES	-	-	-	-	-
10\%C4/ES	$15 \% \mathrm{~B} / \mathrm{ES}$	-	-	-	-	-
10\%C4/ES	15\%B/ES	-	-	-	-	-
5\%L2/DF	10\%L2/DF ${ }^{(10)}$	10\% 1:14	-	-	-	-
10\%L2/DF	10\%L2D/DF	10\% 1:14	-	-	-	-
-	10\%L2/DF(10)	-	-	-	-	-
-	10\%L2/DF ${ }^{(10)}$	-	-	-	-	-
-	$5 \% \mathrm{~L} 2 / \mathrm{DF}^{(10)}$	5\% 1:14	-	-	-	-
$20 \% \text { L2/DF }$	15\%L1CL/DF(10)	10\% 1:14	-	-	-	10\% 1:14
$20 \% \text { L2/DF }$	15\%L1CL/DF ${ }^{(10)}$	10\% 1:14	-	-	-	10\% 1:14
-	10\%L1CL/DF ${ }^{(10)}$	-	-	-	-	
-	10\%L1CL/DF ${ }^{(10)}$	-	-	-	-	-
5\%L2/DF	5\%L1CL/DF ${ }^{(10)}$	-	-	-	-	-
15\%L2/AYC	10\%L1D/AYC	-	-	-	-	-
15\%L2/AYC	10\%L1D/AYC	-	-	-	-	-
10\%L2/AYC	10\%L1D/AYC	5\% 1:16	-	-	-	-
10\%L2/AYC	15\%L1D/AYC	-	-	-	-	-
10\%L2/AYC	15\%L1D/AYC	-	-	-	-	-
10\%L1D/AYC	10\%L1S/AYC	5\% 1:16	-	-	-	5\% 1:16
-	20\%L1/POC ${ }^{(12)}$	5\% 1:16	-	-	-	5\% 1:16
-	20\%L1/POC ${ }^{(12)}$	5\% 1:16	-	-	-	5\% 1:16
-	20\%L1/POC ${ }^{(12)}$	5\% 1:16	-	-	-	5\% 1:16
-	10\%L1/POC ${ }^{(12)}$	5\% 1:16	-	-	-	-
-	10\%L1/POC ${ }^{(12)}$	5\% 1:16	-	-	-	-
-	10\%L1/POC ${ }^{(12)}$	5\% 1:16	-	-	-	-
5\%1.8E/CSP	20\%2.0E/CSP	1/6	1/3	1/2	1/3	1/6
10\%1.8E/CSP	5\%2.0E/CSP	1/6	1/3	1/2	1/3	1/6

TABLE S-1 (Continued)
GRADE REQUIREMENTS FOR MEMBERS STRESSED PRIMARILY IN BENDING (MIXED GRADES) ${ }^{(1,2)}$

				Mini	de of Laminatio	
				Per	e/ Species Each	
Combination Symbol	Balanced/ Unbalanced	Depth of Member	Tension Lam ${ }^{(3)}$	Outer Tension Zone	Inner Tension Zone	Core
1	2	3	4	5	6	7
Western Species (WS						
EWS 24F-E/CSP2	B	$\begin{aligned} & \leq 12 \mathrm{in} . \quad S_{F} \\ & >12 \mathrm{in} . \end{aligned}$	Special rules ${ }^{(13)}$	$\begin{aligned} & \text { 20\%2.0E/CSP } \\ & \text { 20\%2.0E/CSP } \end{aligned}$	$\begin{aligned} & \text { 10\%1.8E/CSP } \\ & 10 \% 1.8 \mathrm{E} / \mathrm{CSP} \end{aligned}$	$\begin{aligned} & \text { 1.4E/CSP } \\ & \text { 1.4E/CSP } \end{aligned}$
EWS 24F-E/CSP3	U	$\begin{aligned} & \leq 10-1 / 2 \mathrm{in.} \quad \mathrm{~S} \\ & >10-1 / 2 \mathrm{in.} . \end{aligned}$	Special rules ${ }^{(13)}$	$\begin{gathered} \hline \text { 20\%2.0E/CSP } \\ 5 \% 2.0 \mathrm{E} / \mathrm{CSP} \end{gathered}$	$\begin{aligned} & 5 \% 1.8 \mathrm{E} / \mathrm{CSP} \\ & 10 \% 1.8 \mathrm{E} / \mathrm{CSP} \end{aligned}$	$\begin{aligned} & \text { 1.4E/CSP } \\ & \text { 1.4E/CSP } \end{aligned}$
EWS 24F-E/CSP4	U	$\begin{aligned} & \leq 12 \mathrm{in} . \quad \mathrm{S} \\ & >12 \mathrm{in.} \end{aligned}$	Special rules ${ }^{(13)}$	$\begin{aligned} & \text { 20\%2.0E/CSP } \\ & \text { 20\%2.0E/CSP } \end{aligned}$	$\begin{aligned} & 10 \% 1.8 \mathrm{E} / \mathrm{CSP} \\ & 10 \% 1.8 \mathrm{E} / \mathrm{CSP} \end{aligned}$	$\begin{aligned} & \text { 1.4E/CSP } \\ & \text { 1.4E/CSP } \end{aligned}$
EWS 24F-E/SPF1	B	$\begin{aligned} & \leq 10-1 / 2 \mathrm{in.} \quad \mathrm{~S} \\ & >10-1 / 2 \mathrm{in.} . \end{aligned}$	Special rules ${ }^{(13)}$	$\begin{gathered} \hline 20 \% 2.0 \mathrm{E} / \mathrm{SPF} \\ 5 \% 2.0 \mathrm{E} / \mathrm{SPF} \end{gathered}$	5\%1.8E/SPF 10\%1.8E/SPF	$\begin{aligned} & 1.4 \mathrm{E} / \mathrm{SPF} \\ & 1.4 \mathrm{E} / \mathrm{SPF} \end{aligned}$
EWS 24F-E/SPF2	B	$\begin{aligned} & \leq 12 \mathrm{in} . \quad \mathrm{S} \\ & >12 \mathrm{in.} \end{aligned}$	Special rules ${ }^{(13)}$	$\begin{aligned} & \text { 20\%2.0E/SPF } \\ & 20 \% 2.0 \mathrm{E} / \mathrm{SPF} \end{aligned}$	10\%1.8E/SPF 10\%1.8E/SPF	$\begin{aligned} & \text { 1.4E/SPF } \\ & 1.4 \mathrm{E} / \mathrm{SPF} \end{aligned}$
EWS 24F-E/SPF3	U	$\begin{aligned} & \leq 10-1 / 2 \mathrm{in.} \quad \mathrm{~S} \\ & >10-1 / 2 \mathrm{in.} . \end{aligned}$	Special rules ${ }^{(13)}$	$\begin{gathered} 20 \% 2.0 \mathrm{E} / \mathrm{SPF} \\ 5 \% 2.0 \mathrm{E} / \mathrm{SPF} \end{gathered}$	$\begin{aligned} & 5 \% 1.8 \mathrm{E} / \mathrm{SPF} \\ & 10 \% 1.8 \mathrm{E} / \mathrm{SPF} \end{aligned}$	$\begin{aligned} & \text { 1.4E/SPF } \\ & 1.4 \mathrm{E} / \mathrm{SPF} \end{aligned}$
EWS 24F-E/SPF4	U	$\begin{aligned} & \leq 12 \mathrm{in} . \quad \mathrm{S} \\ & >12 \mathrm{in.} \end{aligned}$	Special rules ${ }^{(13)}$	$\begin{aligned} & \text { 20\%2.0E/SPF } \\ & 20 \% 2.0 \mathrm{E} / \mathrm{SPF} \end{aligned}$	10\%1.8E/SPF 10\%1.8E/SPF	$\begin{aligned} & \text { 1.4E/SPF } \\ & 1.4 \mathrm{E} / \mathrm{SPF} \end{aligned}$
EWS 24F-E/ES 1	U	4 lams 5 lams to $10-1 / 2 \mathrm{in}$. 12 to 15 in. $>15 \mathrm{in}$.	$302-20$ $302-20$ $302-22$ $302-24$	$\begin{aligned} & 5 \% 1.9 \mathrm{E} / \mathrm{ES} \\ & 25 \% 1.9 \mathrm{E} / \mathrm{ES} \\ & 25 \% 1.9 \mathrm{E} / \mathrm{ES} \\ & 25 \% 1.9 \mathrm{E} / \mathrm{ES} \end{aligned}$	$\begin{aligned} & \text { - }-\mathrm{C} 4 / \mathrm{ES} \\ & 10 \% \mathrm{C} / \mathrm{ES} \\ & 10 \% \mathrm{C} 4 / \mathrm{ES} \end{aligned}$	$\begin{aligned} & \text { B/ES } \\ & \text { D/ES } \\ & \text { D/ES } \\ & \text { D/ES } \end{aligned}$
EWS 24F-E/ES1M1	B	```4 lams 5 lams to 10-1/2 in. 12 to }15\mathrm{ in. > 15 in.```	$302-20$ $302-20$ $302-22$ $302-24$	$\begin{aligned} & 5 \% 1.9 \mathrm{E} / \mathrm{ES} \\ & 25 \% 1.9 \mathrm{E} / \mathrm{ES} \\ & 25 \% 1.9 \mathrm{E} / \mathrm{ES} \\ & 25 \% 1.9 \mathrm{E} / \mathrm{ES} \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { 10\% } 4 / \mathrm{ES} \\ & 10 \% \mathrm{C} 4 / \mathrm{ES} \\ & 10 \% \mathrm{C} 4 / \mathrm{ES} \end{aligned}$	$\begin{aligned} & \text { B/ES } \\ & \text { D/ES } \\ & \text { D/ES } \\ & \text { D/ES } \end{aligned}$
EWS 24F-E15M1/WS	U	$\begin{gathered} <12 \mathrm{in} . \\ 12 \text { to } 15 \mathrm{in} . \\ >15 \mathrm{in} . \end{gathered}$	$\begin{aligned} & 302-20^{(14)} \\ & 302-22^{(14)} \\ & 302-24 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \% 2.1 \mathrm{E} / \mathrm{HF} \\ & 10 \% 2.1 \mathrm{E} / \mathrm{HF} \\ & 10 \% 2.1 \mathrm{E} / \mathrm{HF} \end{aligned}$	$\begin{aligned} & 10 \% 1.9 \mathrm{E} / \mathrm{HF} \\ & 10 \% 1.9 \mathrm{E} / \mathrm{HF} \\ & 10 \% 1.9 \mathrm{~F} / \mathrm{HF} \end{aligned}$	$\begin{aligned} & \mathrm{L} 3 / \mathrm{HF} \\ & \mathrm{~L} 3 / \mathrm{HF} \\ & \mathrm{~L} 3 / \mathrm{HF} \end{aligned}$
EWS 24F-V4/WS	U	$\begin{gathered} <12 \mathrm{in} . \\ 12 \text { to } 15 \mathrm{in.} . \\ >15 \mathrm{in} . \\ <12 \mathrm{in} . \\ 12 \text { to } 15 \mathrm{in.} . \\ >15 \mathrm{in} . \end{gathered}$	$\begin{aligned} & 302-20 \\ & 302-22 \\ & 302-24 \\ & 302-20 \\ & 302-22 \\ & 302-24 \end{aligned}$	$\begin{aligned} & \text { 15\%Ll/DF } \\ & \text { 15\%L1/DF } \\ & 10 \% \mathrm{LI} \text { /DF } \\ & 15 \% \mathrm{~L} \text { 1/DF } \\ & 15 \% \mathrm{LI} \text { /DF } \\ & 10 \% \mathrm{LI} \text { /DF } \end{aligned}$	$\begin{aligned} & \text { 15\%L2/DF } \\ & \text { 15\%L2/DF } \\ & 10 \% \mathrm{~L} 2 / \mathrm{DF} \\ & 15 \% \mathrm{~L} 2 / \mathrm{DF} \\ & 15 \% \mathrm{~L} 2 / \mathrm{DF} \\ & 10 \% \mathrm{~L} 2 / \mathrm{DF} \end{aligned}$	L3/DF L3/DF L3/DF L3/DF L3/DF L3/DF
EWS 24F-V4M1/WS ${ }^{115}$	${ }^{5)} \mathrm{U}$	$\begin{aligned} & 9 \text { lams to } \leq 15 \text { in. } \\ & >15 \text { in. to } 20 \text { lams } \end{aligned}$	$\begin{array}{r} 302-22 \\ 302-24 \end{array}$	$\begin{aligned} & \text { 15\%LI/DF } \\ & \text { 10\%L1/DF } \end{aligned}$	$\begin{aligned} & \text { 15\%L2/DF } \\ & \text { 10\%L2/DF } \end{aligned}$	$\begin{aligned} & \mathrm{L} 3 / \mathrm{DF} \\ & \mathrm{~L} 3 / \mathrm{DF} \end{aligned}$
EWS 24F-V4M2/WS ${ }^{166}$	${ }^{6)} \mathrm{U}$	$\begin{aligned} & 9 \text { lams to } \leq 15 \text { in. } \\ & >15 \text { in. to } 20 \text { lams } \end{aligned}$	$\begin{array}{r} 302-22 \\ 302-24 \\ \hline \end{array}$	$\begin{aligned} & \text { 15\%L1/DF } \\ & \text { 10\%L1/DF } \end{aligned}$	$\begin{aligned} & \text { 15\%L2/DF } \\ & \text { 10\%L2/DF } \end{aligned}$	$\begin{aligned} & \text { L3/DF } \\ & \text { L3/DF } \end{aligned}$
EWS 24F-V5/WS	U	$\begin{gathered} <12 \mathrm{in} . \\ 12 \text { to } 15 \mathrm{in.} . \\ >15 \mathrm{in.} \end{gathered}$	$\begin{aligned} & 302-20 \\ & 302-22 \\ & 302-24 \end{aligned}$	$\begin{aligned} & \text { 20\%L1/DF } \\ & 20 \% \mathrm{Ll} / \mathrm{DF} \\ & 15 \% \mathrm{LI} / \mathrm{DF} \end{aligned}$	$\begin{aligned} & 20 \% \mathrm{~L} / \mathrm{HF} \\ & 20 \% \mathrm{~L} 1 / \mathrm{HF} \\ & 20 \% \mathrm{~L} 1 / \mathrm{HF} \end{aligned}$	$\begin{aligned} & \mathrm{L} 3 / \mathrm{HF} \\ & \mathrm{~L} 3 / \mathrm{HF} \\ & \mathrm{~L} 3 / \mathrm{HF} \end{aligned}$
EWS 24F-V5M1/WS	U	$\begin{gathered} 4 \text { lams } \\ 5 \text { lams to }<12 \mathrm{in} . \\ 12 \text { to } 15 \mathrm{in} . \\ >15 \mathrm{in} . \end{gathered}$	$\begin{aligned} & 302-20 \\ & 302-20 \\ & 302-22 \\ & 302-24 \end{aligned}$	30\%L1/DF 10\%L1/DF 15\%L1/DF 15\%L1/DF	10\%1.8E/SPF or 10\%L2/DF 10\%1.8E/SPF or 10\%L2/DF 10\%1.8E/SPF or 10% L2/DF	$\begin{aligned} & \text { 1.4E/SPF } \\ & 1.4 \mathrm{E} / \mathrm{SPF} \\ & 1.4 \mathrm{E} / \mathrm{SPF} \\ & 1.4 \mathrm{E} / \mathrm{SPF} \end{aligned}$
EWS 24F-V5M2/WS	U	$\begin{gathered} <12 \mathrm{in} . \\ 12 \text { to } 15 \mathrm{in.} . \\ >15 \text { to } 27 \mathrm{in.} . \end{gathered}$	$\begin{aligned} & 302-20 \\ & 302-22 \\ & 302-24 \end{aligned}$	$\begin{aligned} & \text { 20\%L1/DF } \\ & 20 \% \mathrm{LI} \text { /DF } \\ & 15 \% \mathrm{LI} / \mathrm{DF} \end{aligned}$	20\%L1/HF 20\%L1/HF 20\%L1/HF	$\begin{aligned} & \mathrm{L} 3 / \mathrm{HF} \\ & \mathrm{~L} 3 / \mathrm{HF} \\ & \mathrm{~L} 3 / \mathrm{HF} \end{aligned}$

Minimum Grade of Laminations ${ }^{(4,5,6,7)}$

Minimum Grade of Laminations ${ }^{(4,5,6,7)}$						
Percent/Grade/ Species Each Zone ${ }^{(8)}$		Edge Knot/Slope-of-grain ${ }^{(9)}$				
Inner Comp. Zone	Outer Comp. Zone	Outer Tension Zone	Inner Tension Zone	Core	Inner Comp. Zone	Outer Comp. Zone
8	9	10	11	12	13	14
10\%1.8E/CSP	20\%2.0E/CSP	1/6	1/3	1/2	1/3	1/6
10\%1.8E/CSP	20\%2.0E/CSP	1/6	1/3	1/2	1/3	1/6
5\%1.8E/CSP	20\%L2D/DF	1/6	1/3	1/2	1/3	-
10\%1.8E/CSP	5\%L2D/DF	1/6	1/3	1/2	1/3	-
10\%1.8E/CSP	20\%L2D/DF	1/6	1/3	1/2	1/3	-
10\%1.8E/CSP	20\%L2D/DF	1/6	1/3	1/2	1/3	-
5\%1.8E/SPF	20\%2.0E/SPF	1/6	1/3	1/2	1/3	1/6
10\%1.8E/SPF	5\%2.0E/SPF	1/6	1/3	1/2	1/3	1/6
10\%1.8E/SPF	20\%2.0E/SPF	1/6	1/3	1/2	1/3	1/6
10\%1.8E/SPF	20\%2.0E/SPF	1/6	1/3	1/2	1/3	1/6
5\%1.8E/SPF	20\%L2D/DF	1/6	1/3	1/2	1/3	-
10\%1.8E/SPF	5\%L2D/DF	1/6	1/3	1/2	1/3	-
10\%1.8E/SPF	20\%L2D/DF	1/6	1/3	1/2	1/3	-
10\%1.8E/SPF	20\%L2D/DF	1/6	1/3	1/2	1/3	-
-	5\%1.9E/ES	1/6	-	-	-	1/6
10\%C4/ES	15\%B/ES	1/6	-	-	-	-
10\%C4/ES	20\%B/ES	1/6	-	-	-	-
10\%C4/ES	20\%B/ES	1/6	-	-	-	-
-	5\%1.9E/ES	1/6	-	-	-	1/6
10\%C4/ES	25\%1.9E/ES	1/6	-	-	-	1/6
10\%C4/ES	25\%1.9E/ES	1/6	-	-	-	1/6
10\%C4/ES	25\%1.9E/ES	1/6	-	-	-	1/6
10\%1.9E/HF	10\%2.0E/HF	1/6	1/2	1/2	1/2	1/3
10\%1.9E/HF	10\%2.0E/HF	1/6	1/2	1/2	1/2	1/3
10\%1.9E/HF	10\%2.0E/HF	1/6	1/2	1/2	1/2	1/3
10\%L2/DF	10\%L2D/DF	-	-	-	-	-
10\%L2/DF	10\%L2D/DF	-	-	-	-	-
10\%L2/DF	10\%L2D/DF	5\% 1:16	-	-	-	-
10\%L2/DF	10\%L1/DF	-	-	-	-	-
10\%L2/DF	10\%L1/DF	-	-	-	-	-
10\%L2/DF	10\%L1/DF	5\% 1:16	-	-	-	-
10\%L2/DF	10\%L2D/DF	-	-	-	-	-
10\%L2/DF	10\%L2D/DF	5\% 1:16	-	-	-	-
10\%L2/DF	10\%L2D/DF	-	-	-	-	-
10\%L2/DF	10\%L2D/DF	5\% 1:16	-	-	-	-
20\%L2/HF	20\%L2D/DF	-	-	-	-	-
20\%L2/HF	20\%L2D/DF	-	-	-	-	-
10\%L2/HF	10\%L2D/DF	5\% 1:16	-	-	-	-
-	10\%L2D/DF	5\% 1:16	-	-	-	-
10\%1.8E/SPF or 10% L2/DF	10\%L2D/DF	5\% 1:16	-	-	-	-
10\%1.8E/SPF	10\%L2D/DF	5\% 1:16	-	-	-	-
or 10\%L2/DF						
$\begin{aligned} & 10 \% 1.8 \mathrm{E} / \mathrm{SPF} \\ & \text { or } 10 \% \mathrm{~L} / \mathrm{DF} \end{aligned}$	10\%L2D/DF	5\% 1:16	-	-	-	-
20\%L2/HF	20\%L2D/DF	5\% 1:14	-	-	-	-
20\%L2/HF	20\%L2D/DF	5\% 1:16	-	-	-	-
10\%L2/HF	10\%L2D/DF	5\% 1:16	-	-	-	-

TABLE S-1 (Continued)
GRADE REQUIREMENTS FOR MEMBERS STRESSED PRIMARILY IN BENDING (MIXED GRADES) ${ }^{(1,2)}$

					de of Laminati	
					/ Species Each	
Combination Symbol	Balanced/ Unbalanced	Depth of Member	Tension Lam ${ }^{(3)}$	O uter Tension Zone	Inner Tension Zone	Core
1	2	3	4	5	6	7
Western Species (WS						
EWS 24F-V5M3/WS	U	<12 in. 12 to 15 in. 15 to 24 in.	$\begin{aligned} & 302-20 \\ & 302-22 \\ & 302-24 \end{aligned}$	$\begin{aligned} & \text { 15\%L1/DF } \\ & \text { 15\%L1/DF } \\ & \text { 15\%L1/DF } \end{aligned}$	$\begin{aligned} & \hline 20 \% \mathrm{~L} 2 / \mathrm{HF} \\ & 20 \% \mathrm{~L} 2 / \mathrm{HF} \\ & 20 \% \mathrm{~L} 2 / \mathrm{HF} \end{aligned}$	$\begin{aligned} & \mathrm{L} 3 / \mathrm{HF} \\ & \mathrm{~L} 3 / \mathrm{HF} \\ & \mathrm{~L} 3 / \mathrm{HF} \end{aligned}$
EWS 24F-V8/WS	B	$\begin{gathered} <12 \mathrm{in} . \\ 12 \text { to } 15 \mathrm{in} . \\ >15 \mathrm{in} . \end{gathered}$	$\begin{aligned} & 302-20 \\ & 302-22 \\ & 302-24 \end{aligned}$	$\begin{aligned} & \text { 10\%L1/DF } \\ & \text { 10\%L1/DF } \\ & \text { 10\%L1/DF } \end{aligned}$	$\begin{gathered} \text { 10\%L2/DF } \\ \text { 10\%L2D/DF } \\ 5 \% L 2 / D F \end{gathered}$	$\begin{aligned} & \text { L3/DF } \\ & \text { L3/DF } \\ & \text { L3/DF } \end{aligned}$
EWS 24F-V8M1/WS ${ }^{(15)}$	5) B	$\begin{aligned} & 9 \text { lams to } \leq 15 \mathrm{in} . \\ & >15 \mathrm{in} . \text { to } 20 \text { lams } \end{aligned}$	$\begin{aligned} & 302-22 \\ & 302-24 \end{aligned}$	$\begin{aligned} & \text { 10\%L1/DF } \\ & \text { 10\%L1/DF } \end{aligned}$	$\begin{gathered} \text { 10\%L2D/DF } \\ 5 \% L 2 / D F \end{gathered}$	$\begin{aligned} & \text { L3/DF } \\ & \text { L3/DF } \end{aligned}$
EWS 24F-V8M2/WS ${ }^{(16)}$	6) B	$\begin{aligned} & 9 \text { lams to } \leq 15 \mathrm{in} . \\ & >15 \mathrm{in} . \text { to } 20 \text { lams } \end{aligned}$	$\begin{aligned} & 302-22 \\ & 302-24 \end{aligned}$	$\begin{aligned} & \text { 10\%L1/DF } \\ & \text { 10\%L1/DF } \end{aligned}$	$\begin{gathered} \text { 10\%L2D/DF } \\ 5 \% L 2 / D F \end{gathered}$	$\begin{aligned} & \text { L3/DF } \\ & \text { L3/DF } \end{aligned}$
EWS24F-V10/WS	B	<12 in. 12 to 15 in . >15 in.	$\begin{aligned} & 302-20 \\ & 302-22 \\ & 302-24 \end{aligned}$	$\begin{aligned} & 20 \% \text { L1/DF } \\ & 20 \% \mathrm{~L} 1 / \mathrm{DF} \\ & \text { 15\%L1/DF } \end{aligned}$	$\begin{aligned} & \text { 10\%L2/HF } \\ & \text { 10\%L2/HF } \\ & 15 \% \mathrm{~L} 2 / \mathrm{HF} \end{aligned}$	$\begin{aligned} & \mathrm{L} 3 / \mathrm{HF} \\ & \mathrm{~L} 3 / \mathrm{HF} \\ & \mathrm{~L} 3 / \mathrm{HF} \end{aligned}$
EWS 26F-E/DF1	U	9-1/2 in. 11-7/8 in. 14 in. 16 in.	$\begin{aligned} & 302-22 \\ & 302-24 \\ & 302-24 \\ & 302-26 \end{aligned}$	$\begin{aligned} & \text { 1-2.3E/DF } \\ & +1 \text { 1-L1/DF } \\ & 2-2.3 \mathrm{E} / \mathrm{DF} \\ & +1-\mathrm{Ll} / \mathrm{DF} \\ & 2-2.3 \mathrm{E} / \mathrm{DF} \\ & +1-\mathrm{Ll} / \mathrm{DF} \\ & 3-2.3 \mathrm{E} / \mathrm{DF} \\ & +1-\mathrm{L} / \mathrm{DF} \end{aligned}$	$\begin{aligned} & \text { 1-L2/DF } \\ & \text { 1-L2/DF } \\ & \text { 1-L2/DF } \\ & \text { 1-L2/DF } \end{aligned}$	$\begin{aligned} & \text { 1-L3/DF } \\ & \text { 1-L3/DF } \\ & \text { 3-L3/DF } \\ & \text { 3-L3/DF } \end{aligned}$
EWS 26F-E/DF1M1	B	9-1/2 in. 11-7/8 in. 14 in. 16 in.	$\begin{aligned} & 302-22 \\ & 302-24 \\ & 302-24 \\ & 302-26 \end{aligned}$	$\begin{aligned} & \text { 1-2.3E/DF } \\ & +1 \text { 1-L1/DF } \\ & 2-2.3 \mathrm{E} / \mathrm{DF} \\ & +1 \text {-L1/DF } \\ & 2-2.3 \mathrm{E} / \mathrm{DF} \\ & +1 \text {-L1/DF } \\ & 3-2.3 \mathrm{E} / \mathrm{DF} \\ & +1 \text {-L1/DF } \end{aligned}$	$\begin{gathered} \text { 1-L2/DF } \\ - \\ \text { 1-L2/DF } \\ \text { 1-L2/DF } \end{gathered}$	$\begin{aligned} & \text { 1-L3/DF } \\ & \text { 2-L2/DF } \\ & \text { 2-L3/DF } \\ & \text { 1-L3/DF } \end{aligned}$
Southern Pine (SP)						
EWS 24F-V1/SP	U	<12 in. 12 to 15 in. $>15 \mathrm{in}$.	$\begin{gathered} 302-20^{(17)} \\ 302-22 \\ \\ 302-24 \end{gathered}$	10\%N1D/SP 15\%N1D/SP 15\%N1D/SP	$\begin{aligned} & 10 \% N 2 D / S P \\ & 15 \% N 2 M / S P \\ & 15 \% N 2 M / S P \end{aligned}$	N3M/SP N3M/SP N3M/SP
EWS 24F-V3/SP	U	$\begin{gathered} <12 \mathrm{in} . \\ 12 \text { to } 15 \mathrm{in} . \\ >15 \mathrm{in} . \end{gathered}$	$\begin{gathered} 302-20^{(17)} \\ 302-22 \\ 302-24 \end{gathered}$	10\%N1D/SP 10\%N1D/SP 10% N1D/SP	$\begin{aligned} & \text { 15\%N2D/SP } \\ & \text { 15\%N2D/SP } \\ & \text { 15\%N2D/SP } \end{aligned}$	N2M/SP N2M/SP N2M/SP
EWS 24F-V3M1/SP(15)	U	$\begin{aligned} & 9 \text { lams to } \leq 15 \mathrm{in} . \\ & >15 \text { in. to } 20 \text { lams } \end{aligned}$	$\begin{aligned} & 302-22 \\ & 302-24 \end{aligned}$	$\begin{aligned} & \text { 10\%N1D/SP } \\ & \text { 10\%N1D/SP } \end{aligned}$	$\begin{aligned} & 15 \% N 2 D / S P \\ & 15 \% N 2 D / S P \end{aligned}$	N2M/SP N2M/SP
EWS 24F-V3M2/SP(16)	U	$\begin{aligned} & 9 \text { lams to } \leq 15 \mathrm{in} . \\ & >15 \text { in. to } 20 \text { lams } \end{aligned}$	$\begin{gathered} 302-20^{(17)} \\ 302-24 \end{gathered}$	10\%N1D/SP 10\%N1D/SP	$\begin{aligned} & \text { 15\%N2D/SP } \\ & \text { 15\%N2D/SP } \end{aligned}$	N2M/SP N2M/SP

[^0]
Minimum Grade of Laminations ${ }^{(4,5,6,7)}$

Minimum Grade of Laminations ${ }^{(4,5,6,7)}$						
Percent/Grade/ Species Each Zone ${ }^{(8)}$		Edge Knot/ Slope-of-grain ${ }^{(9)}$				
Inner Comp. Zone	Outer Comp. Zone	Outer Tension Zone	Inner Tension Zone	Core	Inner Comp. Zone	Outer Comp. Zone
8	9	10	11	12	13	14
20\%L2/HF	10\%L2D/DF	5\% 1:16	-	-	-	-
20\%L2/HF	15\%L2D/DF	5\% 1:16	-	-	-	-
20\%L2/HF	10\%L2D/DF	5\% 1:16	-	-	-	-
10\%L2/DF	10\%L1/DF	-	-	-	-	-
10\%L2D/DF	10\%L1/DF	-	-	-	-	-
5\%L2/DF	10\%L1/DF	5\% 1:16	-	-	-	5\% 1:16
10\%L2D/DF	10\%L1/DF	-	-	-	-	-
5\%L2/DF	10\%L1/DF	5\% 1:16	-	-	-	5\% 1:16
10\%L2D/DF	10\%L1/DF	-	-	-	-	-
5\%L2/DF	10\%L1/DF	5\% 1:16	-	-	-	5\% 1:16
10\%L2/HF	20\%L1/DF	-	-	-	-	-
10\%L2/HF	20\%L1/DF	-	-	-	-	-
15\%L2/HF	15\%L1/DF	5\% 1:16	-	-	-	5\% 1:16
1-L2/DF	2-L1/DF	1/6	-	-	-	-
1-L2/DF	2-L1/DF	1/6	-	-	-	-
1-L2/DF	2-L1/DF	1/6	-	-	-	-
1-L2/DF	2-L1/DF	1/6	-	-	-	-
1-L2/DF	$\begin{aligned} & 1-2.3 E / D F \\ & +1-L 1 / D F \end{aligned}$	1/6	-	-	-	1/6
-	$\begin{aligned} & \text { 2-2.3E/DF } \\ & +1 \text {-L1/DF } \end{aligned}$	1/6	-	-	-	1/6
1-L2/DF	$\begin{aligned} & 2-2.3 E / D F \\ & +1-L 1 / D F \end{aligned}$	1/6	-	-	-	1/6
1-L2/DF	$\begin{aligned} & \text { 3-2.3E/DF } \\ & +1 \text {-L1/DF } \end{aligned}$	1/6	-	-	-	1/6
10\%N2D/SP	10\%N1D/SP	10\% 1:14	10\% 1:8	1:8	10\% 1:8	10\% 1:10
15\%N2M/SP	15\%N1M/SP ${ }^{(10)}$	$\begin{gathered} 5 \% 1: 14 \\ +\quad 10 \% 1: 10 \end{gathered}$	15\% 1:8	1:8	15\% 1:8	$\begin{gathered} 5 \% 1: 12 \\ +10 \% 1: 10 \end{gathered}$
15\%N2M/SP	$15 \% N 1 M / P^{(10)}$	$\begin{gathered} 5 \% 1: 16 \\ +5 \% 1: 12 \\ +5 \% 1: 10 \end{gathered}$	15\% 1:8	1:8	15\% 1:8	$\begin{gathered} 5 \% 1: 14 \\ +5 \% 1: 12 \\ +5 \% 1: 10 \end{gathered}$
10\%N2D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	10\% 1:8	10\% 1:10
$10 \% N 2 D / S P$	10\%N1D/SP	$10 \% 1: 14$	15\% 1:8	1:8	10\% 1:8	$10 \% 1: 12$
10\%N2D/SP	10\%N1D/SP	$\begin{gathered} 5 \% 1: 14 \\ +5 \% 1: 12 \end{gathered}$	15\% 1:8	1:8	10\% 1:8	$\begin{gathered} 5 \% 1: 12 \\ +5 \% 1: 10 \end{gathered}$
10\%N2D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	10\% 1:8	10\% 1:12
10\%N2D/SP	10\%N1D/SP	$\begin{array}{r} 5 \% 1: 14 \\ +5 \% 1: 12 \\ \hline \end{array}$	15\% 1:8	1:8	10\% 1:8	$\begin{gathered} 5 \% 1: 12 \\ +5 \% 1: 10 \end{gathered}$
10\%N2D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	10\% 1:8	10\% 1:10
10\%N2D/SP	10\%N1D/SP	$\begin{gathered} 5 \% 1: 14 \\ +5 \% 1: 12 \end{gathered}$	15\% 1:8	1:8	10\% 1:8	$\begin{gathered} 5 \% 1: 12 \\ +5 \% 1: 10 \end{gathered}$

TABLE S-1 (Continued)
GRADE REQUIREMENTS FOR MEMBERS STRESSED PRIMARILY IN BENDING (MIXED GRADES) ${ }^{(1,2)}$

				Minim	de of Laminatio	
				Percen	e/Species Each	
Combination Symbol	Balanced/ Unbalanced	Depth of Member	Tension Lam ${ }^{(3)}$	Outer Tension Zone	Inner Tension Zone	Core
1	2	3	4	5	6	7
Southern Pine (SP)						
EWS 24F-V5/SP	B	$\begin{gathered} <12 \mathrm{in} . \\ 12 \text { to } 15 \mathrm{in.} . \\ >15 \mathrm{in.} \end{gathered}$	$\begin{gathered} 302-20^{(17)} \\ 302-22 \\ 302-24 \end{gathered}$	10\%N1D/SP 10\%N1D/SP 10% N1D/SP	$\begin{aligned} & 5 \% \mathrm{~N} 2 \mathrm{D} / \mathrm{SP} \\ & 5 \% \mathrm{~N} 2 \mathrm{D} / \mathrm{SP} \\ & 5 \% \mathrm{~N} 2 \mathrm{D} / \mathrm{SP} \end{aligned}$	$\begin{aligned} & \text { N2M/SP } \\ & \text { N2M/SP } \\ & \text { N2M/SP } \end{aligned}$
		$<12 \mathrm{in}$.	302-20	10\%N1D/SP	15\%N2D/SP	N2M/SP
EWS 24F-V5M1/SP	B	12 to 15 in.	302-22	10\%N1D/SP	15\%N2D/SP	N2M/SP
		$>15 \mathrm{in}$.	302-24	10\%N1D/SP	15\%N2D/SP	N2M/SP
		9 lams to $\leq 15 \mathrm{in}$.	302-22	10\%N1D/SP	15\%N2D/SP	N2M/SP
EWS 24F-V5M2/SP ${ }^{(15)}$	5) B	>15 in. to 20 lams	302-24	10\%N1D/SP	15\%N2D/SP	N2M/SP
		9 lams to $\leq 15 \mathrm{in}$.	302-22	10\%N1D/SP	15\%N2D/SP	N2M/SP
EWS 24F-V5M3/SP ${ }^{(16)}$	6) B	>15 in. to 20 lams	302-24	10\%N1D/SP	15\%N2D/SP	N2M/SP
EWS 26F-V1/SP	U	$\begin{gathered} 7 \text { lams to }<12 \text { in. } \\ 12 \text { to } 15 \text { in. } \\ >15 \text { in. } \end{gathered}$	$\begin{aligned} & 302-22 \\ & 302-24 \\ & 302-26 \end{aligned}$	10\%N1D/SP 10\%N1D/SP 10\%N1D/SP	15\%N1D/SP 15\%N1D/SP 15\%N2D/SP	N1M/SP N2D/SP N2M/SP
EWS 26F-V2/SP	U	$\begin{gathered} 7 \text { lams to }<12 \text { in. } \\ 12 \text { to } 15 \text { in. } \\ >15 \text { in. } \end{gathered}$	$\begin{aligned} & 302-22 \\ & 302-24 \\ & 302-26 \end{aligned}$	10\%N1D/SP 10\%N1D/SP 10\%N1D/SP	15\%N1D/SP 15\%N1D/SP 15\%N1D/SP	N2D/SP N2D/SP N2D/SP
EWS 26F-V3/SP	U	$\begin{gathered} 7 \text { lams to }<12 \text { in. } \\ 12 \text { to } 15 \mathrm{in.} . \\ >15 \mathrm{in} . \end{gathered}$	$\begin{aligned} & 302-22 \\ & 302-24 \\ & 302-26 \end{aligned}$	10\%N1D/SP 10\%N1D/SP 10\%N1D/SP	15\%N1D/SP 15\%N1D/SP 15\%N1D/SP	N1M/SP N1M/SP N1M/SP
EWS 26F-V3M1/SP(15)	5) U	$\begin{aligned} & 9 \text { lams to } \leq 15 \text { in. } \\ & >15 \mathrm{in} . \text { to } 20 \text { lams } \end{aligned}$	$\begin{aligned} & 302-24 \\ & 302-26 \end{aligned}$	10\%N1D/SP 10\%NID/SP	15\%N1D/SP 15\%N1D/SP	N1M/SP N1M/SP
EWS 26F-V3M2/SP ${ }^{(16)}$	6) U	$\begin{aligned} & 9 \text { lams to } \leq 15 \mathrm{in} . \\ & >15 \mathrm{in} . \text { to } 20 \text { lams } \end{aligned}$	$\begin{aligned} & 302-24 \\ & 302-26 \end{aligned}$	10\%N1D/SP 10\%N1D/SP	15\%N1D/SP 15\%N1D/SP	N1M/SP N1M/SP
EWS 26F-V4/SP	B	$\begin{gathered} 7 \text { lams to }<12 \text { in. } \\ 12 \text { to } 15 \mathrm{in.} . \\ >15 \mathrm{in} . \end{gathered}$	$\begin{aligned} & 302-22 \\ & 302-24 \\ & 302-26 \\ & \hline \end{aligned}$	10\%N1D/SP 10\%N1D/SP 10\%N1D/SP	15\%N1D/SP 15\%N1D/SP 15\%N1D/SP	N1M or N2D/SP N1M or N2D/SP N1M or N2D/SP
EWS 26F-V4M1/SP(15)	5) B	$\begin{aligned} & 9 \text { lams to } \leq 15 \mathrm{in} . \\ & >15 \mathrm{in} . \text { to } 20 \text { lams } \end{aligned}$	$\begin{aligned} & 302-24 \\ & 302-26 \end{aligned}$	10\%N1D/SP 10\%N1D/SP	15\%N1D/SP 15\%N1D/SP	N1M or N2D/SP N1M or N2D/SP
EWS 26F-V4M2/SP ${ }^{(16)}$	6) B	$\begin{aligned} & 9 \text { lams to } \leq 15 \text { in. } \\ & >15 \text { in. to } 20 \text { lams } \end{aligned}$	$\begin{aligned} & 302-24 \\ & 302-26 \end{aligned}$	10\%N1D/SP 10\%N1D/SP	$\begin{aligned} & \text { 15\%N1D/SP } \\ & \text { 15\%N1D/SP } \end{aligned}$	N1M or N2D/SP N1M or N2D/SP
EWS 28F-E1/SP(${ }^{(18)}$	U	$\leq 13-3 / 4 \mathrm{in}$. $>13-3 / 4 \mathrm{in}$.	$302-28$ $302-30$	$\begin{gathered} 10 \% 2.3 \mathrm{E} / \mathrm{SP} \\ +10 \% \mathrm{~N} 1 \mathrm{D} 2.3 \mathrm{E} / \mathrm{SP} \\ 5 \% 2.3 \mathrm{E} / \mathrm{SP} \\ +5 \% \mathrm{~N} 1 \mathrm{D} 2.3 \mathrm{E} / \mathrm{SP} \end{gathered}$	10% N1D/SP 15% N1D/SP	N2M/SP N2M/SP
EWS 28F-E1M1/SP ${ }^{(18)}$	8) U	$\begin{aligned} & \leq 13-3 / 4 \mathrm{in} . \\ & >13-3 / 4 \mathrm{in.} \end{aligned}$	$302-28$ $302-30$	$\begin{gathered} 10 \% 2.3 E / S P \\ +10 \% \text { N1D } 2.3 \mathrm{E} / \mathrm{SP} \\ 5 \% 2.3 \mathrm{E} / \mathrm{SP} \\ +5 \% \text { N1D } 2.3 \mathrm{E} / \mathrm{SP} \end{gathered}$	10% N1D/SP 15% N1D/SP	N2M/SP N2M/SP

[^1]Minimum Grade of Laminations ${ }^{(4,5,6,7)}$

Minimum Grade of Laminations ${ }^{(4,5,6,7)}$						
Percent/Grade/Species Each Zone ${ }^{(8)}$		Edge Knot/Slope-of-grain ${ }^{(9)}$				
Inner Comp. Zone	Outer Comp. Zone	Outer Tension Zone	Inner Tension Zone	Core	Inner Comp. Zone	Outer Comp. Zone
8	9	10	11	12	13	14
5\%N2D/SP	10\%N1D/SP	10\% 1:14	5\% 1:8	1:8	5\% 1:8	10\% 1:14
5\%N2D/SP	10\%N1D/SP	10\% 1:15	5\% 1:10	1:8	5\% 1:10	10\% 1:15
5% N2D/SP	10\%N1D/SP	$\begin{gathered} 5 \% 1: 16 \\ +5 \% 1: 12 \end{gathered}$	5\% 1:10	1:8	5\% 1:10	$\begin{gathered} 5 \% 1: 16 \\ +5 \% 1: 12 \end{gathered}$
15\%N2D/SP	10\%N1D/SP	5\% 1:14	15\% 1:8	1:8	15\% 1:8	5\% 1:14
		+ 5\% 1:10				+ 5\% 1:10
15\%N2D/SP	10\%N1D/SP	5\% 1:16	15\% 1:8	1:8	15\% 1:8	5\% 1:16
		+ 5\% 1:10				+ $5 \% 1: 10$
15\%N2D/SP	10\%N1D/SP	5\% 1:16	15\% 1:8	1:8	15\% 1:8	5\% 1:16
		+ 5\% 1:12				+ 5\% 1:12
15\%N2D/SP	10\%N1D/SP	5\% 1:16	15\% 1:8	1:8	15\% 1:8	5\% 1:16
		+ 5\% 1:10				+ 5\% 1:10
15\%N2D/SP	10\%N1D/SP	5\% 1:16	15\% 1:8	1:8	15\% 1:8	5\% 1:16
		+ 5\% 1:12				+ $5 \% 1: 12$
15\%N2D/SP	10\%N1D/SP	5\% 1:16	15\% 1:8	1:8	15\% 1:8	5\% 1:16
		+ $5 \% 1: 10$				$+5 \% 1: 10$
15\%N2D/SP	10\%N1D/SP	5\% 1:16	15\% 1:8	1:8	15\% 1:8	5\% 1:16
		+ 5\% 1:12				+ 5\% 1:12
10\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	10\% 1:8	10\% 1:10
10\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	10\% 1:8	10\% 1:10
10\%N2D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	10\% 1:8	10\% 1:12
10\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	10\% 1:8	10\% 1:10
10\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	10\% 1:8	10\% 1:10
15\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	15\% 1:8	10\% 1:12
10\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	10\% 1:8	10\% 1:10
10\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	10\% 1:8	10\% 1:10
15\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	15\% 1:8	10\% 1:12
10\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	10\% 1:8	10\% 1:10
15\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	15\% 1:8	10\% 1:12
10\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	10\% 1:8	10\% 1:10
15\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	15\% 1:8	10\% 1:12
15\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	15\% 1:8	10\% 1:14
15\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	15\% 1:8	10\% 1:14
15\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	15\% 1:8	10\% 1:14
15\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	15\% 1:8	10\% 1:14
15\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	15\% 1:8	10\% 1:14
15\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	15\% 1:8	10\% 1:14
15\%N1D/SP	10\%N1D/SP	10\% 1:14	15\% 1:8	1:8	15\% 1:8	10\% 1:14
10\%N1D/SP	10\%N1D 2.3E/SP	1/3 \& 10\% 1:12	10\% 1:12	1:8	10\% 1:12	10\% 1:12
		+ 10\% 1:12				
15\%N1D/SP	10\%N1D 2.3E/SP	$\begin{gathered} 1 / 5 \& 5 \% 1: 16 \\ +5 \% 1: 12 \end{gathered}$	15\% 1:12	1:8	15\% 1:12	10\% 1:12
15\%N1D/SP	10\%N1D 2.3E/SP	$\begin{gathered} 1 / 3 \& 10 \% 1: 12 \\ +10 \% 1: 12 \end{gathered}$	10\% 1:12	1:8	15\% 1:12	10\% 1:12
15\%N1D/SP	15\%N1D 2.3E/SP	$\begin{gathered} 1 / 5 \& 5 \% 1: 16 \\ +5 \% 1: 12 \end{gathered}$	15\% 1:12	1:8	15\% 1:12	15\% 1:12

TABLE S-1 (Continued)
GRADE REQUIREMENTS FOR MEMBERS STRESSED PRIMARILY IN BENDING (MIXED GRADES) ${ }^{(1,2)}$

Minimum Grade of Laminations ${ }^{(4,5,6,7)}$

Minimum Grade of Laminations ${ }^{(4,5,6,7)}$						
Percent/Grade/ Species Each Zone ${ }^{(8)}$		Edge Knot/ Slope-of-grain ${ }^{(9)}$				
Inner Comp. Zone	Outer Comp. Zone	O uter Tension Zone	Inner Tension Zone	Core	Inner Comp. Zone	Outer Comp. Zone
8	9	10	11	12	13	14
$\begin{aligned} & 10 \% \text { N1D/SP } \\ & 15 \% N 1 D / S P \end{aligned}$	$\begin{gathered} 10 \% 2.3 \mathrm{E} / \mathrm{SP} \\ +10 \% \mathrm{~N} 1 \mathrm{D} 2.3 \mathrm{E} / \mathrm{SP} \\ 5 \% 2.3 \mathrm{E} / \mathrm{SP} \\ +5 \% \mathrm{~N} 1 \mathrm{D} 2.3 \mathrm{E} / \mathrm{SP} \end{gathered}$	$\begin{gathered} 1 / 3 \& 10 \% 1: 12 \\ +10 \% 1: 12 \\ 1 / 5 \& 5 \% 1: 16 \\ +5 \% 1: 12 \end{gathered}$	$\begin{aligned} & 10 \% ~ 1: 12 \\ & 15 \% ~ 1: 12 \end{aligned}$	$1: 8$ $1: 8$	$\begin{aligned} & 10 \% ~ 1: 12 \\ & 15 \% ~ 1: 12 \end{aligned}$	$\begin{gathered} 1 / 3 \& 10 \% 1: 12 \\ +10 \% 1: 12 \\ 1 / 5 \& 5 \% 1: 16 \\ +5 \% 1: 12 \end{gathered}$
10% N1D/SP 15% N1D/SP	$\begin{gathered} 10 \% 2.3 E / S P \\ +10 \% N 1 D 2.3 E / S P \\ 5 \% 2.3 E / S P \\ +10 \% \text { N1D } 2.3 E / S P \end{gathered}$	$\begin{gathered} 1 / 3 \& 10 \% 1: 12 \\ +10 \% 1: 12 \\ 1 / 5 \& 5 \% 1: 16 \\ +10 \% 1: 12 \end{gathered}$	$\begin{aligned} & 10 \% ~ 1: 12 \\ & 15 \% ~ 1: 12 \end{aligned}$	$1: 8$ $1: 8$	$\begin{aligned} & 10 \% 1: 12 \\ & 15 \% 1: 12 \end{aligned}$	$\begin{gathered} 1 / 3 \& 10 \% 1: 12 \\ +10 \% 1: 12 \\ 1 / 5 \& 5 \% 1: 16 \\ +10 \% 1: 12 \end{gathered}$
20% N1D/SP 15\%N1D/SP	$+10 \%$ N1D $2.3 \mathrm{E} / \mathrm{SP}$ $+15 \%$ N1D $2.3 \mathrm{E} / \mathrm{SP}$	$\begin{gathered} 1 / 3 \& 10 \% 1: 12 \\ +10 \% 1: 12 \\ 1 / 5 \& 5 \% 1: 16 \\ +5 \% 1: 12 \end{gathered}$	$10 \% 1: 12$ $15 \% 1: 12$	$1: 8$ $1: 8$	$20 \% 1: 12$ $15 \% 1: 12$	$10 \% 1: 12$ $15 \% 1: 12$
20% N1D/SP 15\%N1D/SP	$+10 \%$ N1D $2.3 \mathrm{E} / \mathrm{SP}$ $+15 \%$ N1D $2.3 \mathrm{E} / \mathrm{SP}$	$\begin{gathered} 1 / 3 \& 10 \% 1: 12 \\ +10 \% 1: 12 \\ 1 / 5 \& 5 \% 1: 16 \\ +5 \% 1: 12 \end{gathered}$	$10 \% 1: 12$ $15 \% 1: 12$	$1: 8$ $1: 8$	$20 \% 1: 12$ $15 \% 1: 12$	$\begin{aligned} & 10 \% ~ 1: 12 \\ & 15 \% ~ 1: 12 \end{aligned}$
$\begin{aligned} & 10 \% N 1 D / S P \\ & 15 \% N 1 D / S P \end{aligned}$	$\begin{gathered} 10 \% 2.3 \mathrm{E} / \mathrm{SP} \\ +10 \% \mathrm{~N} 1 \mathrm{D} 2.3 \mathrm{E} / \mathrm{SP} \\ 5 \% 2.3 \mathrm{E} / \mathrm{SP} \\ +5 \% \text { N1D } 2.3 \mathrm{E} / \mathrm{SP} \end{gathered}$	$\begin{gathered} 1 / 3 \& 10 \% 1: 12 \\ +10 \% 1: 12 \\ 1 / 5 \& 5 \% 1: 16 \\ +5 \% 1: 12 \end{gathered}$	$\begin{aligned} & 10 \% ~ 1: 12 \\ & 15 \% ~ 1: 12 \end{aligned}$	$1: 8$ $1: 8$	$\begin{aligned} & 10 \% ~ 1: 12 \\ & 15 \% ~ 1: 12 \end{aligned}$	$\begin{gathered} 1 / 3 \& 10 \% 1: 12 \\ +10 \% 1: 12 \\ 1 / 5 \& 5 \% 1: 16 \\ +5 \% 1: 12 \end{gathered}$
$\begin{aligned} & 10 \% N 1 D / S P \\ & 15 \% N 1 D / S P \end{aligned}$	$\begin{gathered} 10 \% 2.3 \mathrm{E} / \mathrm{SP} \\ +10 \% \mathrm{~N} 1 \mathrm{D} 2.3 \mathrm{E} / \mathrm{SP} \\ 5 \% 2.3 \mathrm{E} / \mathrm{SP} \\ +10 \% \mathrm{~N} 1 \mathrm{D} 2.3 \mathrm{E} / \mathrm{SP} \end{gathered}$	$\begin{gathered} 1 / 3 \& 10 \% 1: 12 \\ +10 \% 1: 12 \\ 1 / 5 \& 5 \% 1: 16 \\ +10 \% 1: 12 \end{gathered}$	$10 \% 1: 12$ $15 \% 1: 12$	$1: 8$ $1: 8$	$\begin{aligned} & 10 \% ~ 1: 12 \\ & 15 \% ~ 1: 12 \end{aligned}$	$\begin{gathered} 1 / 3 \& 10 \% 1: 12 \\ +10 \% 1: 12 \\ 1 / 5 \& 5 \% 1: 16 \\ +10 \% 1: 12 \end{gathered}$
1-1.30 in. N1D2.3E/SP 1-1.40 in. N1D2.3E/SP $1-1.50$ in. N1D2.3E/SP(21) 1-1.50 in. N1D2.3E/SP ${ }^{(21)}$	$\begin{aligned} & \text { 1-1.50 in. 2.4E EVL }{ }^{(19)} \\ & 1-1.75 \text { in. } 2.4 \mathrm{EVL} \mathrm{LVL}^{(19)} \\ & 1-1.50 \text { in. } 2.4 \mathrm{EVL} \mathrm{LV}^{(19)} \\ & 1-1.75 \text { in. } 2.4 \mathrm{EVL} \end{aligned}$	- - -	$\begin{aligned} & 1: 12 \\ & 1: 12 \\ & 1: 12 \\ & 1: 12 \end{aligned}$	$\begin{aligned} & 1: 8 \\ & 1: 8 \\ & 1: 8 \\ & 1: 8 \end{aligned}$	$\begin{aligned} & 1: 12 \\ & 1: 12 \\ & 1: 12 \\ & 1: 12 \end{aligned}$	-
1-1.28 in. N1D2.3E/SP	1-1.06 in. 2.4E LVL ${ }^{(20)}$	-	1:12	1:8	1:12	-
1-1.34 in. N1D2.3E/SP	1-1.06 in. 2.4E LVL ${ }^{(20)}$	-	1:12	1:8	1:12	-
1-1.35 in. N1D2.3E/SP	1-1.25 in. 2.4E LVL ${ }^{(20)}$	-	1:12	1:8	1:12	-
1-1.35 in. N1D2.3E/SP	1-1.375 in. 2.4E LVL ${ }^{(20)}$	-	1:12	1:8	1:12	-
1-1.30 in. N1D2.3E/SP	1-1.75 in. 2.4E LVL ${ }^{(20)}$	-	1:12	1:8	1:12	-
1-1.40 in. N1D2.3E/SP	1-1.75 in. 2.4E LVL ${ }^{(20)}$	-	1:12	1:8	1:12	-
1-1.31 in. N1D2.3E/SP	1-1.75 in. 2.4E LVL ${ }^{(20)}$	-	1:12	1:8	1:12	-
1-1.50 in. N1D2.3E/SP	1-1.75 in. 2.4E LVL ${ }^{(20)}$	-	1:12	1:8	1:12	-
2-1.32 in. N1D2.3E/SP	1-1.75 in. 2.4E LVL ${ }^{(20)}$	-	1:12	1:8	1:12	-
$2-1.39$ in. N1D2.3E/SP	1-1.64 in. 2.4E LVL ${ }^{(20)}$	-	1/5, 1:16	1:8	1/5, 1:16	-
$2-1.40$ in. N1D2.3E/SP	2-1.32 in. 2.4E LVL ${ }^{(20)}$	-	1/5, 1:16	1:8	1/5, 1:16	-
$2-1.33$ in. N1D2.3E/SP	2-1.32 in. 2.4E LVL ${ }^{(20)}$	-	1/5, 1:16	1:8	1/5, 1:16	-
$2-1.38$ in. N1D2.3E/SP	2-1.32 in. 2.4E LVL ${ }^{(20)}$	-	1/5, 1:16	1:8	1/5, 1:16	-
$2-1.43$ in. N1D2.3E/SP	2-1.64 in. 2.4E LVL ${ }^{(20)}$	-	1/5, 1:16	1:8	1/5, 1:16	-
3-1.38 in. N1D2.3E/SP	2-1.64 in. 2.4E LVL ${ }^{(20)}$	-	1/5, 1:16	1:8	1/5, 1:16	-

Footnotes:

(1) The combinations in this table are primarily applicable to members stressed in bending due to a load applied perpendicular to the wide faces of the laminations.
(2) The combinations are applicable to arches, compression members, tension members and bending members. For bending members, Footnote No. 3 applies. All combinations are applicable to members with four or more laminations. The tension lamination requirements in Footnote No. 3 do not apply to arches, compression members or tension members.
(3) In addition to the grade requirements tabulated for the outer tension zone, the grading restrictions as contained in AITC 302 tension lamination requirements are applicable to the outer 5 percent of the total depth of bending members. These tension lamination requirements are shown in Column 4. For EWS 20F-V4/WS and EWS 20F-V8/WS from 4 lams to 15 inches in depth, the required 302-20 tension laminations used with L1/DF outer tension zone laminations need not be upgraded to 1:14 slope-of-grain. Where 302-20 tension laminations are used in conjunction with L2, L2D or L3 outer tension zone laminations, the required slope-of-grain is $1: 12$. The 302-tension lamination required for some bending members is permitted to be omitted provided Footnote No. 6 to Table 1 of Y1 17 applies. This reduction does not apply to arches which do not require special tension laminations.
(4) Percent values are based on the total depth of the member. All fractional numbers of laminations shall be rounded upward to the next whole number. For the inner tension and compression zones, the resulting excess of percentage resulting from rounding upward of the outer zone is permitted to be subtracted from the inner zone requirements. The actual depth of the member shall be used to determine the tension lamination requirements from Column 4. In no case shall the tension lamination requirements in Footnote No. 3 be less than 5 percent of the total depth of the member in inches.
(5) The following substitutions of E-Rated Douglas fir-larch lumber are permitted for EWS 24F-V4/WS and EWS 24F-V8/WS with at least 7 laminations in depth:

Douglas Fir-Larch Visual Grade	Member Location	Douglas Fir-Larch E-Rated Substitution Grades
L1	Tension Side	$2.2 \mathrm{E}-2(2.2 \mathrm{E}-3$ in outer tension zone $)$
	Comp. Side	$2.2 \mathrm{E}-2,2.0 \mathrm{E}-3$
L2D	Tension Side	$2.2 \mathrm{E}-2(2.2 \mathrm{E}-3$ in outer tension zone),
		$2.0 \mathrm{E}-3$
	Comp. Side	$1.9 \mathrm{E}-2^{*}$
L2	Tension Side	$1.9 \mathrm{E}-6,2.0 \mathrm{E}-3$
	Comp. Side	$1.9 \mathrm{E}-2$

*7- and 8 -lam beams shall be $1.9 \mathrm{E}-6$. The substitution of $1.9 \mathrm{E}-2$ for an L 2 D does not apply to the outermost compression lam.
(6) The combinations in this table have been established based on procedures given in ASTM D 3737 as modified by subsequent research.
(7) Where specified to have an extreme fiber in bending stress on the compression side which results in tension on the compression (top) side greater than the value given in Column 5, Table 1 of Y117 (except for balanced combinations but not exceeding 200 psi higher than the value in Column 5) tension-zone end-joint spacing restrictions shall be applied to both the tension and compression zones.
(8) Grade designations are as follows:

Visually Graded - Western Species (DF = Douglas fir-Larch;
HF = Hem fir; AYC = Alaska yellow cedar; POC = Port Orford cedar)
L1 is L1 laminating grade (dense for Douglas fir-larch and Douglas fir south)
L1D is L1 dense laminating grade for hem-fir and Alaska cedar
LIS is a special grade of Alaska cedar
L1CL is L1 close grain laminating grade
L2D is L2 dense laminating grade (dense)
L2 is L2 laminating grade (medium grade)
L3 is L3 laminating grade (medium grade for Douglas fir-larch, Douglas fir south and hem-fir)
Visually Graded - Southern pine (SP)
N1D is No. 1 dense structural joists and planks or structural light-framing grade or No. 1 boards both graded as dense
N2D is No. 2 dense structural joists and planks or structural light-framing grade or No. 2 boards both graded as dense
N1M is No. 1 structural joists and planks or structural light-framing grade or No. 1 boards both with a medium-grain rate-of-growth
N2M is No. 2 structural joists and planks or structural light-framing grade or No. 2 boards both with a medium-grain rate-of-growth
N3M is No. 3 structural joists and planks or structural light-framing grade or No. 3 boards both with a medium-grain rate-of-growth
E -Rated Grades - All Species (examples)
$2.0 \mathrm{E}-6$ has 2.0 E with $1 / 6$ edge characteristic
$1.8 \mathrm{E}-3$ has 1.8 E with $1 / 3$ edge characteristic
$1.4 \mathrm{E}-2$ has 1.4 E with $1 / 2$ edge characteristic
E-Rated Grades - Eastern Spruce (ES)
B / ES has a minimum long-span E of $1.55 \times 10^{6} \mathrm{psi}$
C6/ES has a minimum long-span E of $1.6 \times 10^{6} \mathrm{psi}$
C4/ES has a minimum long-span E of $1.4 \times 10^{6} \mathrm{psi}$
D4/ES has a minimum long-span E of 1.4×10^{6} psi
D/ES has no minimum long-span E requirement
These Eastern Spruce referenced herein shall apply to the following species grown in the United States or Canada: White spruce, Black spruce, and Red spruce. In addition to the minimum long-span E given above, these laminating lumber shall be graded in accordance with the requirements in CSA Standard O122.
(9) Where slope-of-grain is not tabulated, it shall be the slope-of-grain required for the grade. Slope-of-grain is not specified for E-rated lumber except for tension laminations, but slope near the ends of the piece shall not be steeper than slopes of grain in the remainder of the piece.
(10) When required to have 650 psi compression-perpendicular-to-grain design value for Douglas fir-larch or 740 psi for southern pine, at least one 2 -inch nominal-thickness lamination of dense Douglas fir-larch for western species, or dense southern pine for southern-pine species, shall be used in place of the tabulated lamination in the bearing area, provided the next inner lamination is medium grain Douglas fir-larch or southern pine.
(11) The layup requires the use of $1 x$ laminations with a maximum nominal width of 4 inches. Only one ripping is permitted to achieve the specific beam width without varying the basic grade requirements of the full-width laminating lumber.
(12) L1/POC lam used in the outer tension and compression zones requires a specific gravity of 0.41 or greater based on oven-dry weight and asreceived volume.
(13) In addition, the 2.0E lam material shall be visually graded in accordance with the E-rated tension-lam provisions of AITC 117 (alternate provisions for 302-24 tension lam) with the exception that general slope-of-grain restrictions are not applicable.
(14) The outer 5% tension lamination(s) shall have a slope-of-grain not steeper than 1:16.
(15) This combination contains wane. Wane lumber is allowed for use with the following restrictions: (a) Maximum wane is $1 / 6$ of the finished member width; (b) No wane is allowed for the outer top and bottom lams; (c) No wane is allowed for the 302 tension lams; (d) No wane is allowed in the central 40% of the member depth; (e) Maximum wane is $1 / 2$ the lam thickness for No. 1 or L1 and $2 / 3$ the thickness for No. 2 or L2; (f) Wane is allowed only on one side of the finished member; and (g) The first interior lam from the top or bottom shall have the wane located away from the outside lam.
(16) This combination contains wane. Wane lumber is allowed for use with the following restrictions: (a) Maximum wane is $1 / 6$ of the finished member width; (b) No wane is allowed for the outer top and bottom lams; (c) No wane is allowed for the 302 tension lams; (d) Maximum wane is $1 / 2$ the lam thickness for No. 1 or L1 and 2/3 the thickness for No. 2 or L2; (e) Wane is allowed only on one side of the finished member; and (f) The first interior lam from the top or bottom shall have the wane located away from the outside lam.
(17) The 302-grade tension laminations are included in AITC 117. When used in the indicated depth range with this combination, the laminating lumber shall have a slope-of-grain not steeper than that shown in Column 10 for the outer tension zone. This footnote applies to the 302-20 requirement of EWS $24 \mathrm{~F}-\mathrm{V} 1 / \mathrm{SP}$, EWS $24 \mathrm{~F}-\mathrm{V} 3 / \mathrm{SP}$, and EWS $24 \mathrm{~F}-\mathrm{V} 5 / \mathrm{SP}$.
(18) For the manufacture of 28 F and 30 F (30 F is limited to a nominal beam width of 6 " or less) southern pine members, quality control procedures for daily QC monitoring of the average and minimum MOE of the E-rated grades shall be established. End joints for the tension laminations shall be qualified at $1.67 \times 3,000=5,010 \mathrm{psi}$. Following initial qualification, daily QC shall be maintained through the use of a statistical process control methodology. The visually-graded and E-rated laminations shall meet the following requirements:

Grade	Grade Requirements
$2.3 \mathrm{E}-5 \& 16$	Must meet all requirements for 302-24 tension lam;
Tension Lam	Average MOE $\geq 2.3 \times 10^{6}$ psi with the 5th percentile
	$\geq 1.96 \times 10^{6}$ psi; Edge characteristics $\leq 20 \%$; Centerline
	characteristics $\leq 25 \%$; Slope-of-grain $\leq 1 / 16$;
	Both ends shall be dense.

TABLE S-2
GRADE REQUIREMENTS FOR MEMBERS STRESSED PRIMARILY IN AXIAL TENSION OR COMPRESSION (Uniform Grade) ${ }^{(1,2)}$

Combination Symbol	Minimum Grade of Laminations					
		Species		Tension Laminations If Required ${ }^{(1,4)}$		
EWS 1	L3 lams to <12 in. deep	12 in. to 15 in. deep	>15 in. deep			
EWS 2	L2	DF			$302-20$	
EWS 3	L2D	DF	$302-20$	$302-20$	$302-20$	
EWS 5	L1	DF	$302-20$	$302-22$	$302-24$	
EWS 22 ${ }^{(5)}$	L3	SW	$302-20$	$302-22$	$302-24$	
EWS 69	L3	AYC	$302-20$	$302-20$	$302-20$	
EWS 70	L2	AYC	$302-20$	$302-20$	$302-20$	
EWS 71	L1D	AYC	$302-20$	$302-20$	$302-20$	
EWS ES 11	C4	ES	$302-20$	$302-22$	$302-24$	
EWS ES 12	1.9E6	ES	$302-20$	$302-20$	$302-20$	
EWS POC 1 ${ }^{(6)}$	L1	POC	$302-20$	$302-20$	$302-20$	
EWS POC 2	L2	POC	$302-20$	$302-20$	$302-22$	
Southern Pine (SP)			$302-20$	$302-20$	$302-20$	
EWS 47	N2M14	SP			$302-20$	
EWS 48	N2D14	SP	$302-20$	$302-20$	$302-20$	
EWS 49	N1M16	SP	$302-20$	$302-20$	$302-22$	
EWS 50	N1D14	SP	$302-20$	$302-22$	$302-24$	

Footnotes:
(1) The tension laminations are required only when the $F_{b x}$ values given in Column 13 of Table 2 of Y117 are increased in accordance with Footnote No. 6 to Table 2.
(2) The allowable wane permitted in some grades in Table $\mathrm{S}-1$ is not allowed for combinations in this table.
(3) Grade designations are the same as Footnote No. 8 to Table S-1.
(4) If required, the outer 5 percent of laminations on the tension side of bending members shall be replaced with the tension lamination shown in this table. Percent values are based on the total depth of members. Laminations of different thicknesses shall be permitted to be used in the same member provided that the total thickness of tension lamination(s) equals or exceeds 5 percent of the depth.
(5) Footnote No. 8 to Table 2 of Y 117 applies.
(6) L1/POC lam used in the outer tension and compression zones requires a specific gravity of 0.41 or greater based on oven-dry weight and as-received volume.

Glulam beams allowed Caldera Hearth Center project designers in Sisters, Oregon to construct an indoor/outdoor roof that added 13,000 square feet of covered space.

Erecting glulam structures is often much faster and more cost effective than comparable steel systems because there is no need for specialized trades.

Glulam is manufactured as balanced or unbalanced. Unbalanced beams have different bending stresses in the outer laminations and are clearly marked "top" to ensure proper installation.

Glulam is available in a range of appearance classifications: framing, framing-L (LVL lams outermost surfaces), industrial, industrial-L (LVL lams outermost surfaces), architectural and premium.

Glulam Layup Combinations

We have field representatives in many major U.S. cities and in Canada who can help answer questions involving APA trademarked products. For additional assistance in specifying engineered wood products, contact us:
APA HEADQUARTERS

7011 So. 19th St. \cdot Tacoma, Washington 98466 - (253) 565-6600 • Fax: (253) 565-7265
www.apawood.org
$\stackrel{F}{7}$

PRO DUCT SUPPORT HELP DESK

(253) 620-7400 • E-mail Address: help@apawood.org

DISCLAIMER

The information contained herein is based on APA - The Engineered Wood Association's continuing programs of laboratory testing, product research and comprehensive field experience. Neither APA, nor its members make any warranty, expressed or implied, or assume any legal liability or responsibility for the use, application of, and/or reference to opinions, findings, conclusions or recommendations included in this publication. Consult your local jurisdiction or design professional to assure compliance with code, construction and performance requirements. Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility for product performance or designs as actually constructed.

Form No. Y117E-SUP/Revised August 2008

[^0]: Footnotes on page 12.

[^1]: Footnotes on page 12.

